Geez I HATE the "what's different about these 2 pictures". A LARGE portion of the left side of the image is CUT OUT of the right image! I kept clicking on stuff that wasn't there. You've got to show pictures that are at least the same size and are over the same area.
Why does my IQ keep LOWERING when I solve puzzles correctly? It did it 6 times in a row just now! It was up to 172 and then I got another of the spaceship puzzles like in the game orbox and I solved that very fast yet it lowered to 166. The dice game and the 4x3 memory test later, both of which I won, and it was down to 155. Then I won the tower of hanoi, and it lowered to 148, and then I won a maze level, and it was 146! Does the game maker actually know that higher is smarter? Or is it so stupidly designed that if I get an easy puzzle, it lowers the IQ even if I get it right. Would it raise my IQ if I got a "hard" puzzle and failed at it?
And a SWITCH? That's a WALL OUTLET. Geez, you need a better description than that anyway, a switch could be a pushbutton switch or a toggle switch or a slide switch or a dip switch or two dangling pieces of wire for crying out loud.
Of the puzzle games that aren't just NP complete crud:
How to win the tower of hanoi (the one with the donuts):
Label the pegs A B C. You want to move them from A to C. Start by moving the top donut from A to X. If there are an odd number of donuts, X=C. If even, X=B. Let Y=C if X=B, and Y=B if X=C. You put the next larger donut on Y. Then move the small donut on X to Y. Now there is a stack of 2 on Y and X is empty. Then you move the third largest donut from A to X. Then Y to A, then Y to X, then A to X. Now there is a stack of 3 on X and Y is empty. Then continue this; move A to Y, X to Y, X to A, Y to A, X to Y, A to X, A to Y, X to Y, which leaves 4 on Y and none on X. Every time you end up with a stack of size n on X with nothing on Y, or a stack of size n on Y with nothing on X, you move the next bigger donut from A to the empty peg, and then just perform the same series of actions to move the stack of size n on top of it to produce a stack of size n+1 that you used to produce the stack of size n. Naturally this is an exponential process, since it takes 2A+1 moves where A moves were needed to produce the stack of size n. Basically, whenever you want to move a stack from one peg to another, you look to see whether you want to move an odd number or an even number. If odd, you move the top one to the destination, if even, you start by moving it to the other one.
The stupid dogs (aka lights out. But with dogs):
Oh, you silly, silly game author. You made a lights out game on a n by n square where n is an even number. That's just sad. All you need to do is, start from row 2. Click the dogs which cause all the dogs on row 1 to be standing. In other words, just click the ones on row 2 which are adjacent to the ones which are sitting on row 1. Then go to row 3. Click on the ones adjacent to the ones which are sitting on row 2. Then click on the ones adjacent to the ones sitting on row 3. Done.
The water glasses:
The solution to this is to the Euclidean algorithm, what repeated subtraction to find a quotient is to long division:
Solution #1:
Step 1: Fill the middle glass with the big one.
Step 2: Pour the middle glass into the little one.
Step 3: If the the little glass is full, empty it into the big one and goto Step 2.
Step 4: If the big glass doesn't contain the desired partitioned amount of water, goto step 1.
Step 5: Pour the little glass if any into the middle one.
Solution #2 (the inverse of solution #1):
Perform solution 1, just switch every occurrence of "little" with "middle".
You eventually win. If the size of the middle and small glasses are relatively prime. If they aren't, there's no solution unless the small or medium glasses' capacities are equal to the volume of water you want (in which case it's a really easy problem).
It's Die Hard.... without a vengeance.
All these games, they either have design problems or they're classic problems that everyone already knows about or should know.